TEKNIK RISET OPERASIONAL
Pendahuluan
1. Pengertian Teknik Riset Operasi
Riset Operasi adalah metode untuk memformulasikan dan merumuskan
permasalahan sehari-hari baik mengenai bisnis, ekonomi, sosial maupun bidang
lainnya ke dalam pemodelan matematis untuk mendapatkan solusi yang optimal.
2. Pemodelan Matematis
Bagian terpenting dari Riset Operasi adalah bagaimana menerjemahkan
permasalahan sehari-hari ke dalam model matematis. Faktor-faktor yang
mempengaruhi pemodelan harus disederhanakan dan apabila ada data yang
kurang, kekurangan tersebut dapat diasumsikan atau diisi dengan pendekatan yang
bersifat rasional. Dalam Riset Operasi diperlukan ketajaman berpikir dan logika.
Untuk mendapatkan solusi yang optimal dan memudahkan kita mendapatkan
hasil, kita dapat menggunakan komputer. Software yang dapat digunakan antara
lain: LINDO (Linear, Interactive and Discrete Optimizer) dan POM For Windows.
Program Linear
Program linear adalah salah satu model matematika yang digunakan untuk menyelesaikan masalah optimisasi, yaitu memaksimumkan atau meminimumkan fungsi tujuan yang bergantung pada sejumlah variabel input. Hal terpenting yang perlu kita lakukan adalah mencari tahu tujuan penyelesaian masalah dan apa penyebab masalah tersebut.
Dua macam fungsi Program Linear:
Fungsi tujuan : mengarahkan analisa untuk mendeteksi tujuan perumusan masalah
Fungsi kendala : untuk mengetahui sumber daya yang tersedia dan permintaan atas
sumber daya tersebut.
Masalah Maksimasi
- Maksimisasi dapat berupa memaksimalkan keuntungan atau hasil.
Contoh:
- PT LAQUNATEKSTIL memiliki sebuah pabrik yang akan memproduksi 2 jenis produk, yaitu kain sutera dan kain wol. Untuk memproduksi kedua produk diperlukan bahan baku benang sutera, bahan baku benang wol dan tenaga kerja. Maksimum penyediaan benang sutera adalah 60 kg per hari, benang wol 30 kg per hari dan tenaga kerja 40 jam per hari. Kebutuhan setiap unit produk akan bahan baku dan jam tenaga kerja dapat dilihat dalam tabel berikut:
- Kedua jenis produk memberikan keuntungan sebesar Rp 40 juta untuk kain sutera dan Rp 30 juta untuk kain wol. Masalahnya adalah bagaimana menentukan jumlah unit setiap jenis produk yang akan diproduksi setiap hari agar keuntungan yang diperoleh bisa maksimal.
Lngkah-langkah
1) Tentukan variabel
X1=kain sutera
X2=kain wol
2) Fungsi tujuan
Zmax= 40X1 + 30X2
3) Fungsi kendala / batasan
1. 2X1 + 3X2 ≤ 60 (benang sutera)
2. 2X2 ≤ 30 (benang wol)
3. 2X1 + X2 ≤ 40 (tenaga kerja)
1. 2X1 + 3X2 ≤ 60 (benang sutera)
2. 2X2 ≤ 30 (benang wol)
3. 2X1 + X2 ≤ 40 (tenaga kerja)
Cara mendapatkan solusi optimal:
1. Dengan mencari nilai Z setiap titik ekstrim.
Titik A
X1=0, X2=0
masukkan nilai X1 dan X2 ke Z
Z = 40 . 0 + 30 . 0 = 0
Titik B
X1=20, X2=0
masukkan nilai X1 dan X2 ke Z
Z = 40 . 20 + 30 . 0 = 800
Titik C
Mencari titik potong (1) dan (3) 2X1 + 3X2 = 60
2X1 + X2 = 40 -
2X2=20 X2=10
Masukkan X2 ke kendala (1) 2X1 + 3X2 = 60
2X1 + 3 . 10 = 60
2X1 + 30 = 60
2X1 = 30 X1 = 15
masukkan nilai X1 dan X2 ke Z 40X1 + 30X2 = 40 . 15 + 30 . 10 = 600 + 300 = 900 (optimal)
Titik D
2X2 = 30
X2 = 15
masukkan X2 ke kendala (1)
2X1 + 3 . 15 = 60
2X1 + 45 = 60
2X1 = 15 X1 = 7,5
Masukkan nilai X1 dan X2 ke Z
Z = 40 . 7,5 + 30 . 15 = 300 + 450 = 750
Titik E
Titik E
X2 = 15
X1 = 0
masukkan nilai X1 dan X2 ke Z
Z = 40 . 0 + 30 .15 = 450Kesimpulan :
untuk memperoleh keuntungan optimal, maka X1 = 15 dan X2 = 10 dengan keuntungan sebesar Rp 900 juta.
Semoga Bermanfa'at, Terimakasih.